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Identifying causal effects in nonexperimental data is an enduring
challenge. One proposed solution that recently gained popu-
larity is the idea to use genes as instrumental variables [i.e.,
Mendelian randomization (MR)]. However, this approach is prob-
lematic because many variables of interest are genetically corre-
lated, which implies the possibility that many genes could affect
both the exposure and the outcome directly or via unobserved
confounding factors. Thus, pleiotropic effects of genes are them-
selves a source of bias in nonexperimental data that would also
undermine the ability of MR to correct for endogeneity bias from
nongenetic sources. Here, we propose an alternative approach,
genetic instrumental variable (GIV) regression, that provides esti-
mates for the effect of an exposure on an outcome in the presence
of pleiotropy. As a valuable byproduct, GIV regression also pro-
vides accurate estimates of the chip heritability of the outcome
variable. GIV regression uses polygenic scores (PGSs) for the out-
come of interest which can be constructed from genome-wide
association study (GWAS) results. By splitting the GWAS sam-
ple for the outcome into nonoverlapping subsamples, we obtain
multiple indicators of the outcome PGSs that can be used as
instruments for each other and, in combination with other meth-
ods such as sibling fixed effects, can address endogeneity bias
from both pleiotropy and the environment. In two empirical appli-
cations, we demonstrate that our approach produces reasonable
estimates of the chip heritability of educational attainment (EA)
and show that standard regression and MR provide upwardly
biased estimates of the effect of body height on EA.
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A major challenge in the social sciences and in epidemiol-
ogy is the identification of causal effects in nonexperimental

data. In these disciplines, ethical and legal considerations along
with practical constraints often preclude the use of experiments
to randomize the assignment of observations between treatment
and control groups or to carry out such experiments in sam-
ples that represent the relevant population (1). Instead, many
important questions are studied in field data which make it diffi-
cult to discern between causal effects and (spurious) correlations
that are induced by unobserved factors (2). Obviously, confusing
correlation with causation is not only a conceptual error; it can
also lead to ineffective or even harmful recommendations, treat-
ments, and policies, as well as a significant waste of resources
(e.g., as in ref. 3).

One important source of bias in field data stems from genetic
effects: Twin studies (4) as well as methods based on molecular
genetic data (5, 6) allow estimation of the proportion of vari-
ance in a trait that is due to linear genetic effects (so-called
narrow-sense heritability). Using these and related methods,
an overwhelming body of literature demonstrates that almost
all important human characteristics, behaviors, and health out-
comes are influenced both by genetic predisposition and by
environmental factors (7–9). Most of these traits are “genetically

complex,” which means that the observed heritability is due to
the accumulation of effects from a very large number of genes
that each have a small, often statistically insignificant, influ-
ence (10).

Furthermore, genes often influence several seemingly unre-
lated traits, a phenomenon called direct or vertical pleiotropy
(11, 12). For example, a mutation of a single gene that causes
the disease phenylketonuria is responsible for mental retardation
and also for abnormally light hair and skin color (13). Pleiotropy
is not restricted to diseases. All genes involved in healthy cell
metabolism and cell division can be expected to directly influ-
ence a broad range of traits such as body height, cognitive ability,
and longevity, even if the effect on each of these traits may be
tiny. Similarly, any gene involved in neurodevelopment and brain
function is likely to contribute to human behavior and mental
health in some way (14).

In addition to direct pleiotropic effects, genes can also have
indirect or horizontal pleiotropic effects, where a genetic vari-
ant influences one trait, which in turn influences another trait
(11). The similarity of the genetic architecture of two traits is
estimated by their genetic correlation (i.e., the correlation of the
“true” effect sizes of all genetic variants on both traits) (15),
which captures both direct and indirect pleiotropic effects (16–
18). Genetic correlations exist between many traits and often
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exceed their phenotypic correlations (19), giving rise to the
concern that direct pleiotropy may substantially bias studies that
do not control for genetic effects (20).

If an experimental design is not possible, the gold standard in
the presence of genetic confounds is to compare outcomes for
monozygotic (MZ) twins (21, 22), who are by definition genet-
ically (almost) identical (23). In addition, this approach also
controls for effects that arise from shared parental environment.
However, the practical challenge is that such studies require
very large sample sizes of MZ twin pairs because differences
within MZ twin pairs tend to be small or nonexistent. Further-
more, unobserved environmental differences between the twins
or reverse causation can still lead to wrong conclusions in this
study design.

Another popular strategy to isolate causal effects in nonexper-
imental data is to use instrumental variables (IVs) (24). Valid
IVs are conceptually similar to natural experiments: They pro-
vide an exogenous “shock” on the exposure of interest to isolate
the effect of that exposure on an outcome. Valid IVs need to
satisfy two important conditions. First, they need to be corre-
lated with the exposure conditional on the other control variables
in the regression (i.e., IVs need to be “relevant”). Second, they
need to be independent of the error term of the regression
conditional on the other control variables and produce their
correlation with the outcome solely through their effect on the
exposure (the so-called exclusion restriction). In practice, finding
valid IVs that satisfy both requirements is difficult. In particu-
lar, satisfying the exclusion restriction is challenging. [Two other
conditions that valid IVs need to satisfy are monotonicity (every-
one who is affected by the IV is affected in the same direction)
and the stable unit treatment value assumption (SUTVA): The
“treatment” of one unit does not affect the outcome variable for
other units.]

Epidemiologists have proposed to use genetic information to
construct IVs and termed this approach Mendelian randomiza-
tion (MR) (25–28). The idea is in principle appealing because
genotypes are randomized in the production of gametes by the
process of meiosis. Thus, conditional on the genotype of the par-
ents, the genotype of the offspring is the result of a random draw.
So if it could be known which genes affect the exposure, it may
be possible to use them as IVs to identify the causal influence of
the exposure on some outcome of interest. However, there are
four challenges to this idea. First, we need to know which genes
affect the exposure and isolate true genetic effects from envi-
ronmental confounds that are correlated with ancestry. Second,
if the exposure is a genetically complex trait, any gene by itself
will capture only a very small part of the variance in the trait,
which leads to the well-known problem of weak instruments (29,
30). Third, genotypes are randomly assigned only conditional on
the genotype of the parents. Unless it is possible to control for
the genotype of the parents, the genotype of the offspring is not
random and correlates with everything that the genotypes of the
parents correlate with (e.g., parental environment, personality,
and habits) (31). Fourth, if direct pleiotropic effects of genes are
the source of the confound, these genes could obviously not be
used as IVs. One could try to isolate a subset of genes that influ-
ence only the exposure, but such attempts are still hindered by
our limited knowledge of the function of most genes (27, 32, 33).

Recent advances in complex trait genetics make it possible
to address the first two challenges of MR. Array-based geno-
typing technologies have made the collection of genetic data
fast and cheap. As a result, very large datasets are now avail-
able to study the genetic architecture of many human traits
and a plethora of robust, replicable genetic associations have
recently been reported in large-scale genome-wide association
studies (GWASs) (34). These results begin to shed light on the
genetic architecture that is driving the heritability of traits such
as body height (35), body mass index (BMI) (36), schizophrenia

(37), Alzheimer’s disease (38), depression (39), and educational
attainment (EA) (15).

High-quality GWASs use several strategies to control for
genetic structure in the population, and empirical evidence sug-
gests that the vast majority of the reported genetic associations
for many traits is not confounded by ancestry (40–43). Polygenic
scores (PGSs) have become the favored tool for summarizing
the genetic predispositions for genetically complex traits (15, 39,
44, 45). PGSs are linear indexes that aggregate the estimated
effects of all currently measured genetic variants [typically single-
nucleotide polymorphisms (SNPs)]. The effects of each SNP on
an outcome are estimated in large-scale GWASs that exclude
the prediction sample. Recent studies demonstrate that this
approach yields PGSs that begin to predict genetically complex
outcomes such as height, BMI, schizophrenia, and EA (35–37,
39, 46). Although PGSs still capture substantially less of the
variation in traits than suggested by their heritability (47) (an
issue we return to below), PGSs capture a much larger share of
the variance of genetically complex traits than individual genetic
markers. The third challenge to MR in the above list could in
principle be addressed if the genotypes of the parents and the
offspring are observed (e.g., in a large sample of parent–offspring
trios) or by using large samples of siblings or dizygotic twins
where the genetic differences between siblings are random draws
from the parent’s genotypes. However, the fourth challenge (i.e.,
pleiotropy) remains a serious obstacle despite recent efforts to
relax the exogeneity assumptions in MR (48–50).

Here, we address the implications of pleiotropy for modeling
causal relationships using nonexperimental data. We demon-
strate that pleiotropy is a serious source of bias in ordinary
least-squares regression (OLS) and MR. We propose alternative
estimation strategies that use PGSs for the outcome of interest
to reduce bias arising from pleiotropy. In particular, we pro-
pose an approach that we call genetic instrumental variables
(GIV) regression that can be implemented using widely avail-
able statistical software. GIV regression estimates practically
useful upper and lower bounds for the causal effect of an expo-
sure on an outcome even in the presence of substantial direct
pleiotropy.

We begin by providing intuition and laying out the assump-
tions of our approach. We go on to show that GIV regression
produces accurate estimates for the effect of the PGSs on the
outcome variable when the other covariates in the model are
exogenous, when the true PGS is uncorrelated with the error
term net of the included covariates, and when the GWAS sam-
ple sizes are sufficiently large relative to the number of SNPs. We
then turn to the more complex case of when a regressor of inter-
est (T ) is potentially correlated with unobserved variables in the
error term because of pleiotropy, and we show with evidence
from a comprehensive set of simulations that the bias under
these assumptions with GIV regression is generally smaller
than with OLS, MR, or what we term an enhanced version of
MR (EMR).

Next, we demonstrate the practical usefulness of our approach
in empirical applications using the publicly available Health and
Retirement Study (HRS) (51). First, we demonstrate that a con-
sistent estimate of the so-called chip heritability (47) of EA can
be obtained with our method. Then, we estimate the effects of
body height on EA. As a “negative control,” we check whether
our method finds a causal effect of EA on body height (it should
not). (Note that a clean experimental design which randomizes
people into groups based on body height or EA is not possi-
ble. Thus, any attempt to study the causal relationship between
the two variables must rely on observational data and naturally
occurring experiments like the genetic endowment of individuals,
which we exploit here.)

Formal derivations and technical details are contained in SI
Appendix, sections 1–5.
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Theory
Intuition. To build intuition for our approach, we introduce the
concept of the true PGS for y which would be constructed using
the true effects of each SNP on y . In theory, the true SNP effects
could be estimated in a GWAS on y in an infinitely large sample
that is drawn from the same population as the prediction sam-
ple. The true PGS would capture the narrow-sense heritability of
y . Of course, the true PGS is unknown. All one can practically
obtain is a PGS from a finite GWAS sample that will capture a
part, but not all, of the genetic influence on y because the effect
of each SNP is estimated with noise. The attenuated predictive
accuracy of practically available PGSs (45, 47, 52) is conceptu-
ally similar to the well-known problem of measurement error
in regression analysis. It has long been understood that multi-
ple indicators can, under certain conditions, provide a strategy to
correct regression estimates for attenuation from measurement
error (53–55). We show below that by splitting the GWAS sam-
ple into independent subsamples, one can obtain several PGSs
(i.e., multiple indicators) in the prediction sample. Each will have
even lower predictive accuracy than the original score due to
the smaller GWAS subsamples used in their construction, but
these multiple indicators can be used as instrumental variables
for each other, and the instruments will satisfy the assumptions
of IV regression to the extent that the measurement errors (the
difference between the true and calculated PGSs) are uncorre-
lated. Standard two-stage least-squares (2SLS) regression (24)
(readily available in statistics software packages) using at least
one valid IV for the PGS of y can then be used to back out an
unbiased estimate of the heritability of y .

Next, presume the matter of interest is not heritability, but the
causal effect of some treatment T on y , where T is also her-
itable and some genes have direct pleiotropic effects on both.
If these genes are not known and not controlled for, regressing
y on T would result in omitted variable bias. (Unfortunately,
that is the reality in most social scientific and epidemiological
studies that use nonexperimental data.) Suppose the effects of
all genes that influence y through channels other than T could
be known. Theoretically, one could estimate these effects in a
GWAS on y that controls for T in an infinitely large sample.
That information could be used to construct a “true conditional”
PGS in a prediction sample. Adding the true conditional PGS
to a regression of y on T in the prediction sample would effec-
tively eliminate bias arising from direct pleiotropy. However, the
true conditional PGS is also unknown and all we can practically
obtain is a noisy proxy of it from a finite GWAS sample. While it
is not guaranteed, the general conclusion of the literature is that
the use of proxy variables is an improvement over omitting the
variable being proxied (56, 57). Furthermore, having a valid IV
for the conditional score would potentially correct for its noise
and get us closer to estimating the true causal effect of T on
y . As before, a valid IV can be practically obtained by splitting
the GWAS sample into independent parts and standard IV esti-
mation techniques such as two-stage least squares can be used.
We refer to this approach as conditional genetic IV regression
(GIV-C).

If conditional GWAS results are not available, one can still
add the unconditional PGS for y as a control variable and use
IV regression with multiple indicators for this score to correct
for measurement error. We refer to this as unconditional GIV
regression (GIV-U). GIV-U still corrects for bias arising from
direct pleiotropy, but this strategy will overcontrol and result in
estimates for T that are biased toward zero because the uncondi-
tional PGS also includes indirect pleiotropic effects of genes that
affect y only because they affect T . However, extensive simula-
tions show that the combination of GIV-C and GIV-U turns out
to produce reasonable upper and lower bounds for the effect of
T on y across a broad range of scenarios if the only sources of
bias are pleiotropic genes.

The GIV strategy starts to break down when bias arises from
unobserved nongenetic factors as well as from pleiotropic effects.
We show below that both GIV and MR produce biased estimates
in this case. However, we demonstrate that the combination
of GIV-C and GIV-U still outperforms OLS and MR. Fur-
thermore, the GIV approach has additional utility because it
can be combined with other strategies to reduce the effects
of environmental endogeneity (e.g., additional control variables
or family fixed effects). We demonstrate that these combined
strategies can potentially provide accurate information about the
effects of an exposure in situations with both genetic and non-
genetic sources of endogeneity. In contrast, the problems for
MR that are produced by pleiotropy bias are not fixable in a
similar manner.

Assumptions. GIV regression builds on the standard identify-
ing assumptions of IV regression (24). In the context of our
approach, this implies six specific conditions:

i) Polygenicity: The outcome is a genetically complex trait that
is influenced by many genetic variants, each with a very small
effect.

ii) Complete genetic information: The available genetic data
include all variants that influence the variable(s) of interest.

iii) Genetic effects are linear: All genetic variants influence
the variable(s) of interest via additive linear effects. Thus,
there are no genetic interactions (i.e., epistasis) or dominant
alleles.

iv) Unbiased GWAS results: The available GWAS results are
not systematically biased by omitted environmental variables.
For example, failure to control for population structure can
lead to spurious genetic associations (31).

v) Nonoverlapping samples: It is possible to divide GWAS sam-
ples into nonoverlapping subsamples drawn from the same
population.

vi) The genetic effects on y are the same in the GWAS and
the prediction samples; i.e., the genetic correlation between
samples is one.

Estimating Narrow-Sense SNP Heritability from Polygenic Scores.
Under these assumptions, consistent estimates of the chip heri-
tability of a trait (i.e., the proportion of variance in a trait that
is due to linear effects of currently measurable SNPs) can be
obtained from polygenic scores (for full details, see SI Appendix,
section 2). If y is the outcome variable, X is a vector of exoge-
nous control variables, and S∗y|X is a summary measure of genetic
tendency for y in the presence of controls for X , then one
can write

y =α+Xβ+ γS∗y|X + ε [1]

=α+Xβ+ γ(Gζy|X ) + ε,

where G is an n ×m matrix of genetic markers, and ζy|X is the
m × 1 vector of SNP effect sizes, where the number of SNPs
is typically in the millions. If the true effects of each SNP on
the outcome were known, the entire genetic tendency for y
would be captured by the true unconditional score S∗y|X , and
the marginal R2 of S∗y|X in Eq. 1 would be the chip heritabil-
ity of the trait. We refer to the estimate of the PGS from actually
available GWAS data in the presence of controls for X as Sy|X ,
where

Sy|X =S∗y|X + v1 =Gζy|X +Guy|X [2]

and uy|X is the estimation error in ζy|X and Sy|X is substituted
for S∗y|X in Eq. 1. The variance of a trait that is captured by its
available PGS increases with the available GWAS sample size
to estimate ζy|X and converges to the SNP-based narrow-sense
heritability of the trait at the limit if all relevant genetic markers
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were included in the GWAS and if the GWAS sample size were
sufficiently large (45, 47, 52).

Eq. 1 contains what is called in econometrics a “generated
regressor” in that S∗ is a function of a set of variables (G)
and coefficients (ζy|X ) from another model. As previous work
(58, 59) has established, OLS will provide consistent estimates
of the parameters of Eq. 1 (although corrections for standard
errors are needed) if S is substituted for S∗ under a set of
reasonable assumptions that include convergence in probabil-
ity of ζ̂y|X to ζy|X as the sample size grows larger. However,
the practical utility of this mathematical result is questionable
in the current context, when the number of variables in G is
in the millions while the number of cases available to estimate
S∗ is far smaller than that. The imposed ratio of coefficients
to cases requires nonconventional estimation methods that use
a combination of statistical assumptions to obtain estimates of
S . Empirical studies using PGSs for a variety of traits have
consistently demonstrated substantial attenuation in the esti-
mate of γ (45, 47, 52), and, while the bias diminishes with
GWAS sample size, we are a long time away from having large
enough sample sizes to bring this attenuation down to ignor-
able levels. This situation, therefore, calls for alternative strate-
gies to address important questions with the datasets currently
available.

The most straightforward solution to the problem of attenua-
tion bias is to obtain multiple indicators of the PGS by splitting
the GWAS discovery sample for y into two mutually exclusive
subsamples with at least partially overlapping sets of SNPs. This
produces noisier estimates of S∗y|X , with lower predictive accu-
racy, but the multiple indicators can be used as IVs for each
other. The 2SLS regression using Sy1|X as an instrument for
Sy2|X will then recover a consistent estimate of γ in Eq. 1 under
standard IV assumptions (55, 60).

As discussed more technically in SI Appendix, section 1, an
additional important assumption for Sy1|X to be a valid instru-
ment for Sy2|X is that y be a complex trait, meaning that it is
influenced by a large number of genetic markers, each of which
has a very small effect. If y is primarily influenced by a rela-
tively small number of markers, then the method proposed here
would not work well. However, there would also be no need for
the proposed method, because the markers with large effects
could be easily identified and their effects estimated with rea-
sonable precision using discovery sample sizes that are already
obtainable.

Another required assumption is that the genetic markers
are independent of each other. In general, genetic markers
are correlated if they are located close to each other on the
same chromosome. However, it is currently possible to iso-
late several hundred thousand markers from the total set of
millions of SNPs that have sufficient spatial separation in the
DNA to be essentially mutually independent, which means
that this assumption can be satisfied to a sufficient level of
accuracy.

Assuming that the variables in Eq. 1 are standardized to have
mean zero and a SD of one, and further assuming that the
variables contained in X control for population stratification
or are not correlated with genotype G , a consistent estimate
of the chip heritability of y can now be obtained from ĥ2

y =

γ̂2ρ(Sy1|X ,Sy2|X ), where ρ is the correlation coefficient. The
heritability estimate ĥ2

y is not equal to γ̂2 simply because we
regressed on Sy|X =S∗y|X + v instead of S∗y|X . Thus, we stan-
dardize with respect to the variance of Sy|X instead of S∗y|X ,
which leads to a bias equal to 1/Var(S∗y|X ). Multiplying γ̂2 with
the correlation between Sy1|X and Sy2|X recovers a consistent
estimate for ĥ2

y (SI Appendix, section 2.1). (For an alternative
approach to correcting attenuation bias based on the use of

multiple indicators in a structural equation modeling framework,
see ref. 61.)

Reducing Bias Arising from Genetic Correlation Between Exposure
and Outcome. Polygenic scores also play a potentially important
role in situations where the question of interest is not the chip
heritability of y per se, but rather the effect of some nonrandom-
ized exposure on y (e.g., a behavioral or environmental variable
or a nonrandomized treatment due to policy or medical inter-
ventions). We can rewrite Eq. 1 by adding a treatment variable
of interest T , such that

y = δT +Xβy + γS∗y|XT + εy [3]

= δT +Xβy +Gζy|XT + εy ,

where

T =αS∗T |X +XβT + εT [4]

=GξT |X +XβT + εT .

We assume that the disturbance term is uncorrelated with
genetic variables. (We drop this assumption later. Also, we drop
the subscript on the coefficients for the exogenous control vari-
ables X below when it would not lead to confusion.) We now use
the true conditional score S∗y|XT rather than S∗y|X in the equa-
tion. Given that T is in the model, the effect of individual SNPs
on y will generally involve a direct net effect of T (ζ) and an
indirect effect stemming from the combination of their effect on
T (ξ) and the effect of T on y . Having S∗y|XT in the equation
would effectively control for pleiotropic effects on T and y .

In standard MR, a measure of genetic tendency (ST |X ) for a
behavior of interest (T in Eq. 3) is used as an IV in an effort to
purge δ̂ of bias that arises from correlation between T and unob-
servable variables in the disturbance term under the assumption
that ST |X is exogenous (60, 62). One such example would be
the use of a PGS for height as an instrument for height in a
regression of EA on height. The problem with this approach is
that the PGS for height will fail to satisfy the exclusion restric-
tion if (some of) the genes affecting height also have a direct
effect on EA (e.g., via healthy cell growth and metabolism) or if
they are correlated with unmeasured environmental factors that
affect EA. (Classic MR typically does not use PGSs as instru-
ments. Instead, the idea is to use single genetic variants that
are known to affect the exposure via well-understood biological
mechanisms that make it unlikely to violate the exclusion restric-
tion. In practice, limited knowledge about the biological function
of most genes makes it difficult to argue that direct pleiotropic
effects of the gene on the exposure and the outcome of
interest exist.)

If the true conditional (net of T ) genetic propensity for y
could be directly controlled in the regression, pleiotropy would
not bias coefficient estimates. For example, fixed-effects regres-
sion where the same individual is observed multiple times would
effectively control for pleiotropy (which does not vary over time),
but this strategy is often not available (e.g., in a study of the effect
of height on EA).* Direct control for the conditional genetic
propensity for y is, of course, not possible, because S∗y|XT (more
specifically, the coefficients, ζy|XT in Eq. 3) is not known. What
is obtainable instead is a proxy for S∗y|XT , namely Sy|XT , which
contains measurement error due to finite GWAS sample size and
potential bias in the estimate of T in the GWAS.

*Fixed-effects estimation with panel data would also preclude MR-type strategies
because the IV does not vary over time, and genetic indicators for T would generally
have a weak relationship to changes in T over time. Fixed-effects regressions based on
other strategies (e.g., sibling or neighborhood fixed-effects models) would not control
for pleiotropy. We discuss these strategies at greater length below.
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We refer to the combined use of Sy|XT as a control and ST |X
as an IV for T as EMR. However, controlling for Sy|XT as a
proxy for S∗y|XT is not a perfect solution to pleiotropy because it
leaves a component of S∗y|XT in the error term which is correlated
with ST due to pleiotropy. As a result, the EMR estimate for δ
will be biased. The practical question, then, is whether alternative
strategies that split the GWAS sample for Y to obtain multi-
ple indicators of Sy|XT that can be used as IVs for each other
(e.g., Sy1|XT and Sy2|XT ) are sufficient to rescue ST as a prac-
tically useful IV for T .† This is a practical question beyond the
reach of formal mathematics and best answered by simulation
analyses. Unfortunately, and as we show in SI Appendix, section
2, the pleiotropy-induced violation of the exclusion restriction
when using genetic IVs for T is sufficient to produce serious bias
in the estimated effect of T even if one attempts to control for
pleiotropy using such strategies. The magnitude of bias clearly
depends on the quality of the proxies for S∗y|XT . However, we
find that pleiotropy leads to considerable bias in MR in virtually
all scenarios we investigated (SI Appendix, sections 2, 3, and 4
and Tables S2–S15).

The problems posed by pleiotropy cannot be completely elim-
inated without knowledge of S∗y|XT (SI Appendix, section 2).
However, this situation does not mean that the estimation prob-
lems introduced by pleiotropy are intractable. When endogeneity
bias is driven by genetic correlation, the PGS for y can still
be used to obtain more accurate estimates of the effect of
T than can be obtained with MR or, for that matter, with
OLS that lacks controls for the direct effect of genetic mark-
ers on y . To gain insight into the best strategy, we consider the
reasons for the pleiotropy bias. Regardless of whether the esti-
mation strategy is OLS or the second stage of IV regression
involving OLS on predicted variables from the first stage, the
coefficient bias comes from the extent to which the expected esti-
mate of the OLS coefficients differs from the true coefficients;‡

namely,
E [β̂|X ] =β+E [

(
X ′X

)−1
X ′ε|X ]. [5]

In other words, the coefficient bias from OLS is the expected
regression coefficient of the error on the included variables in
the regression. If ε is the sum of an omitted variable, z , which
is correlated with the regressors, and additional variables that
are uncorrelated with the regressors, then the bias for each
coefficient βk in Eq. 5 becomes the product of the regression
coefficient for xk in the regression of z on all of the omitted
variables multiplied by the effect of z on the outcome. For sim-
plicity, we assume that the only variables in the regression are
T and a potential proxy for S∗y|XT , which we call S̃y|XT . For
any given proxy, S̃y|XT , the bias in the estimate of δ̂ (the coef-
ficient for T in Eq. 3) comes from the expected coefficient of
T from a regression of γS∗y|XT − γ̃S̃y|XT on T and S̃y|XT . We
consider three alternative approaches for the proxy S̃y|XT , which
we call simple OLS, GIV-C, and GIV-U. First, we use Sy|XT

as a proxy for S∗y|XT in a simple OLS regression. Second, we
observe that Sy|XT is correlated with T ; its inclusion in the error
(by virtue of its being controlled) may affect the bias in δ̂. So

†An earlier version of our paper pursued this approach and called it GIV regression.
However, we later found that controlling for T in a GWAS for y induces a correlation of
Sy1|XT with ST that invalidates the latter as an IV. The version of GIV-U and GIV-C regres-
sion we describe below does not have this problem because it does not use a genetic
instrument for T anymore. Instead, GIV-U and GIV-C both rely on a proxy-control strat-
egy that uses only an instrument for Sy1|XT or Sy1|X to correct for measurement error
in these proxies for S∗y|XT and S∗y|X .

‡It is possible to have finite-sample bias that disappears asymptotically, in which case the
estimator is consistent. We use the expectation formula instead because it is arguably
more straightforward to understand.

we construct an estimate for Sy1|XT , namely Ŝy1|XT , by using
Sy2|X (the unconditional PGS from the second GWAS sam-
ple) as its IV. We call this approach, where Ŝy1|XT is used as
the regressor in the second stage, GIV-C. We also use a third
estimator that uses the same IV as in GIV-C (i.e., Sy2|X ), but
that substitutes the unconditional PGS for y (i.e., substitutes
Sy1|X for the conditional PGS Sy1|XT ) in the structural model
in Eq. 3. We then use Sy2|X to predict Sy1|X , obtaining Ŝy1|X
as the regressor in the second stage. We call this third approach
GIV-U.

We generally expect the use of GIV-C to perform better than
the use of the proxy Sy|XT in simple OLS. If the true effect of T
on y is positive and positive pleiotropy is present, the estimated
effect of T on y will have positive bias. This follows from the
positive correlation between S∗y|XT and T and from the positive
effect of S∗y|XT on y . The presence of the proxy Sy|XT in the first
approach (simple OLS) adds a partially offsetting negative bias,
because the correlation between Sy|XT and T is positive and the
effect γ̃OLS is also positive, but γ̂OLSSy|XT is being subtracted,
which causes the offsetting bias to be negative. The net bias is
expected to be positive, but we would expect it to be smaller
with the inclusion of the proxy than with no proxy at all, both
because the correlation between T and Sy|XT would be lower
than between T and S∗y|XT and because we expect γ̂OLS to be
attenuated relative to γ. When GIV-C is used instead, the term
in the error becomes γS∗y|XT − γ̂IVc Ŝy1|XT . The presence in the
first stage of GIV-C of T , which is correlated with S∗y|XT , pre-
vents the IV strategy from obtaining a consistent estimate of γ.
Nonetheless, we would generally expect γ̂IVc > γ̂OLS , and there-
fore we expect the positive bias for the estimate of δ to be smaller
when using GIV-C than when estimating δ using OLS and the
proxy Sy1|X . We confirm this in the simulations in SI Appendix,
Tables S2–S7.

With GIV-U, the problem term in the error is γS∗y|XT −
γ̂IVu Ŝy1|X . As before, the presence of the first term produces
a positive bias in the estimate of δ, while the second term pro-
duces an offsetting negative bias. The offset will be stronger
when the unconditional PGS for y is the regressor in the struc-
tural model, because the coefficients of the genetic markers in
Sy1 are δ̂ξ̂+ ζ̂, where ξ is the effect of the genetic marker on
T . The presence of δ̂

(
G ξ̂

)
in the second endogenous term in

the error (i.e., the second term in γS∗y|XT − γ̃S̃y|XT ) produces
a stronger downward bias. This downward bias is made still
stronger by the use of γ̂IVu instead of γ̂OLS as the coefficient,
because we expect the first-stage regression to reduce the down-
ward bias of γ̂OLS . In other words, we expect these three proxies
to behave differently in the simulations, and, as we will see, this
expectation is met in practice. We establish via a comprehen-
sive set of simulations that GIV-C and GIV-U provide upper
and lower bounds for the effect of T across a range of plau-
sible scenarios for pleiotropy and for heritability (SI Appendix,
Tables S2–S7). We further establish through simulation analyses
that GIV-C and GIV-U perform similarly in the case when endo-
geneity arises from pleiotropy and when it arises from pleiotropy
in combination with genetic confounds for reasons other than
pleiotropy [epistasis, effects from rare alleles, or genetic nurtur-
ing effects, where the environment of ego is shaped by genetically
related individuals to ego (63)] (SI Appendix, section 3 and
Tables S8–S10).

Simulations
We explored the performance of GIV regression in finite sam-
ple sizes using three sets of simulation scenarios (SI Appendix,
sections 2–4). The simulations generated genetic and pheno-
typic data at the individual level from a set of known models in
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a training sample and a holdout sample using parameters that
are realistic for genetically complex traits. We then estimated
genetic effects on T and y using GWAS in the training sample
and constructed polygenic scores with the estimated parameters
for each SNP in the holdout sample. Thus, the polygenic scores
in our simulations have the realistic property that their predic-
tive accuracy increases with the size of the training (i.e., GWAS)
sample and the average effect size of each SNP (45, 52). Finally,
we analyzed the extent to which various estimation strategies
recover the effect of the PGS for y on y and the effect of T
on y in the holdout sample. We produced these estimates using
OLS, MR, EMR, proxy OLS, GIV-C, and GIV-U regression,
and we compared these results with the true answer across a
range of parameter values. We ran 20 simulations with different
random seeds for each set of parameters to obtain a distribution
of estimated effects. (The computer code for these simulations is
available at https://github.com/cburik/GIVsim.)

The simulations specify that the true PGS scores for y and T
covary as a result of genetic correlation. We made the conserva-
tive assumption that the entire genetic correlation between y and
T is due to direct pleiotropy; i.e., all genes that are associated
with both phenotypes have direct effects on both. In practice,
this is unlikely to be the case, but it is equally unlikely that one
can put a credible upper bound on (or completely rule out) direct
pleiotropy.

In the first set of simulations, we assumed that the entire endo-
geneity problem arises from genetic confounds (SI Appendix,
section 2).

In the second set of simulations, we allowed endogeneity to
arise from sources that are both correlated with genes and that
cause the disturbance term in the structural equation for y to
be correlated with the disturbance term in the structural model
for T even if the true conditional PGS for y were included in
the structural equation (SI Appendix, section 3). This situation
would occur if rare alleles were missing from the true PGS for
T and the true conditional PGS for y based on known SNPs and
if the effect of these alleles was correlated with the true PGS
scores for T and y . It would also occur under conditions of epis-
tasis where nonlinear effects of genes were in the error and were
correlated with the linear effects of genes in the PGS for T and

the conditional PGS for y . Third, this situation would occur if
the genetic factors that affect T are correlated with the environ-
mental factors in the disturbance term for y that are caused or
selected by parental genes, which are correlated with the genes
of sample members and therefore also with variables (like T )
that are affected by the genes of sample members, i.e., by genetic
nurturing (63).

In the third set of simulations, we specified the presence of a
correlation between the error terms in the models for y and T
that was not itself correlated with genetic variables (SI Appendix,
section 4). This would occur in a situation where some environ-
mental or behavioral factor that is unrelated to genetics produces
both an effect on T and an effect on y .

A summary of these results is in Table 1 for the case where
the effect of T is set to 1.0 (see SI Appendix, Table S16 for
details on the standardized effect size). Scenarios A–D in Table
1 refer to situations where pleiotropy is the only source of bias,
scenario E contains pleiotropy plus other sources of genetic con-
founds, while scenarios F and G also include endogeneity from
nongenetic (i.e., environmental) sources. The results provide
considerable reason to be skeptical of estimates from MR. When
pleiotropy is present, the MR strategy is undermined by the vio-
lation of the exclusion restriction for genetic IVs. Our results
find that MR performs poorly even when nongenetic endogene-
ity is present along with pleiotropy. In contrast, GIV regression
provides reasonable upper and lower bounds of the true effect
of T on y if the source of endogeneity is only from pleiotropy
or other genetic confounds (i.e., unobserved genetic variants,
epistasis, or genetic nurturing) and the heritability of T and y
is not extreme. GIV-C generally overestimates the effect of T
but the overestimation is modest at low to moderate levels of
pleiotropy and heritability and is more accurate than OLS with-
out proxies, MR, or EMR. GIV-U generally underestimates the
effect of T on y but provides an estimate that is reasonably
close to the true answer under conditions of low to moderate
levels of pleiotropy and heritability. Even at higher levels of
pleiotropy and heritability, the combination of GIV-C and GIV-
U provides useful information about whether T actually has a
causal effect on y and what the upper bound of this effect is
likely to be.

Table 1. Illustrative results from simulations, estimated coefficient for T

Model Parameter OLS MR GIV-C GIV-U

A Pleiotropy only 1.1004 1.5040 1.0131 0.9419
h2

y =h2
T = 0.2 (0.0001) (0.0012) (0.0001) (0.0001)

B Pleiotropy only 1.2011 1.5024 1.0604 0.8575
h2

y =h2
T = 0.4 (0.0001) (0.0004) (0.0001) (0.0001)

C Pleiotropy only 1.3016 1.5020 1.1573 0.7263
h2

y =h2
T = 0.6 (0.0001) (0.0002) (0.0001) (0.0002)

D Pleiotropy only 1.5004 3.4922 1.0776 0.8689
h2

y = 0.8, h2
T = 0.2 (0.0005) (0.0093) (0.0002) (0.0002)

E Genetic Confounds 1.3106 1.4609 1.1922 0.6422
h2

y =h2
T = 0.5, ρνy = ρνT = 0.5 (0.0001) (0.0002) (0.0001) (0.0002)

F Nongenetic confounds 1.4520 1.5032 1.4259 1.1193
h2

y =h2
T = 0.5, ρe = 0.4 (0.0001) (0.0002) (0.0001) (0.0001)

G Nongenetic confounds with control 1.3643 1.5064 1.3346 0.9587
h2

y =h2
T = 0.5, ρe = 0.4, s= 0.5 (0.0001) (0.0002) (0.0001) (0.0001)

Shown are mean estimated coefficient for T and SE within parentheses of 20 simulations using different
estimation methods for several models. For all models the genetic correlation (ρ) was 0.5 and the coefficient
for T (δ) was 1. h2

y and h2
T are the heritability parameters of y and T. ρνy is the correlation between y and

the genetic confound for y. ρνT is the correlation between T and the genetic confound for T . ρe = 0.4 is the
correlation between the nongenetic confound and y. s is the share of the confound that is controlled for in
terms of variance of the confound. These results are a selection from SI Appendix, Tables S2–S4, S7, S9, S11,
and S14; see SI Appendix, sections 2–4 for all results. A, Table S2; B, Table S3; C, Table S4; D, Table S7; E, Table
S9; F, Table S11; and G, Table S14. See row 2 of each table. See SI Appendix, Table S6 for more details on the
parameters, variance, and standardized effect size.
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In the case where the true value of T is zero (i.e., where
the true model is Eq. 1), we expect that GIV-U will produce
an estimate that is close to zero as long as the endogeneity
comes either from pleiotropy or from other genetic confounds
(see SI Appendix, sections 2–4, for details). The simulations in SI
Appendix section 2 show that when the endogeneity is only from
genetic sources, GIV-U estimates the effect of T to be close to
zero regardless of the level of pleiotropy or inheritance that is
specified in the simulations.

When the source of endogeneity is nongenetic in origin, we
find that neither MR nor proxy controls for pleiotropy provide
a satisfactory method for determining the effect of T on y . In
this scenario, the pleiotropy creates endogeneity bias for genetic
IVs that defeats the ability of MR to solve the problem of non-
genetic endogeneity via an IV strategy. Nongenetic endogeneity
can cause even GIV-U to overpredict the effect of T on y ,
although in our simulations it is clearly the most accurate of all
of the estimators that we have surveyed when the effect of T is
zero. Indeed, GIV-U always provides the most conservative esti-
mate across the entire range of scenarios that we have surveyed,
both for the case where an effect of T on y exists and when the
effect of T is zero.

Inference with the GIV can be further strengthened in cases
where nongenetic endogeneity can be controlled either through
observable variables or through strategies such as family fixed
effects that reduce or eliminate the impact of nongenetic forms
of environmental endogeneity. Indeed, environmental endo-
geneity is a concern in most applied-research questions that use
nonexperimental data. Reassuringly, our simulations show that
GIV regression is a good estimation strategy in the presence
of both direct pleiotropy and environmental endogeneity if con-
trol variables are available that manage to absorb a substantial
share of the nongenetic confounds (SI Appendix, Tables S13–
S15). Therefore, we recommend using GIV regression always in
combination with control variables the capture possible environ-
mental confounds, ideally in datasets that allow controlling for
family fixed effects (e.g., using siblings or dizygotic twins). In SI
Appendix, section 6, we provide additional practical guidelines
for GIV regression.

The simulations described in this paper certainly do not
cover all conceivable data-generating processes, but they are
nonetheless of considerable utility.

Empirical Applications
We illustrate the practical use of GIV regression in two empir-
ical applications using data from the Health and Retirement
Survey (HRS) for 2,751 unrelated individuals of northwest
European descent who were born between 1935 and 1945
(SI Appendix, section 5).

The Narrow-Sense SNP Heritability of EA. First, we demon-
strate that GIV regression can recover the unbiased genomic–
relatedness-matrix restricted maximum-likelihood (GREML)
estimate of the chip heritability of EA. Specifically, we follow the
common practice in GREML estimates of heritability and ana-
lyze the residual of EA from a regression of EA on birth year,
birth year squared, gender, and the first 20 principal components
from the genetic data (64). Next, we standardize the residual and
regress it on a standardized PGS for EA using OLS or GIV.
The results are displayed in Table 2. The OLS estimate of the
PGS accounts for 6.8% of the variance in EA (β2 = ∆R2 =
6.8%), which is substantially lower than the 17.3% (95% CI ±
4%) estimate of chip heritability reported by ref. 64 in the same
data using GREML. [GREML yields unbiased estimates of SNP-
based heritability that are not affected by attenuation (65).]
Instead, the GIV regression results in columns 2 and 3 of Table
2 imply a chip heritability of 13.4% (CI ± 3.9%) and 13.8%
(±4.0%), respectively. Thus, the 95% CIs of the GREML esti-

Table 2. Effects of the polygenic score for educational
attainment (PGS EA) on (residualized) educational attainment in
the Health and Retirement Study (HRS)

Variable OLS IV1 IV2

PGS EA UKB 0.259∗∗∗ 0.523∗∗∗

(0.0183) (0.0385)
PGS EA SSGAC 0.530∗∗∗

(0.0389)
ĥ2 NA 0.134 0.138

NA (0.0197) (0.0202)
N 2,751 2,751 2,751

*P< 0.05, **P< 0.01, ***P< 0.001. We regress the residual of EA on
the different PGSs and calculate the implied heritability estimates. SEs are in
parentheses. All variables have been standardized. EA is measured in years
of schooling needed to obtain the highest achieved educational degree
according to International Standard Classification of Education (ISCED) clas-
sifications. We use the residual of EA after a regression on birth year, birth
year squared, gender, and the first 20 principal components in the genetic
data. PGS EA SSGAC: PGS for EA using meta-analysis from ref. 15, excluding
data from 23andMe, UK Biobank (UKB), and HRS; PGS EA UKB, PGS for EA
using UKB data. IV1 uses PGS EA SSGAC as instrument and IV2 uses PGS EA
UKB as instrument. NA, not applicable.

mate and the two GIV estimates overlap, demonstrating that
GIV regression can recover the chip heritability of EA from
polygenic scores.

The Relationship Between Body Height and Educational Attain-
ment. Previous studies using both OLS and sibling or twin
fixed-effects methods have found that taller people generally
have higher levels of EA (66–68). They are also more likely to
perform well in various other life domains, including earnings,
higher marriage rates for men (although with higher proba-
bilities of divorce), and higher fertility (69–74). The question
is what drives these results. Can they be attributed to genetic
effects that jointly influence these outcomes? Are there social
mechanisms that systematically favor taller or penalize shorter
individuals? Or are there nongenetic factors (e.g., the uterine
and postbirth environments especially related to nutrition or dis-
ease) that affect both height and these life-course outcomes?
The literature on the relationship between height and EA has
found evidence that the association arises largely through the
relationship between height and cognitive ability, which may sug-
gest that the height–EA association is driven largely by genetic
association between height and cognitive ability. We use GIV
regression with individual-level data from the HRS to clarify
the influence of height on EA, and we compare these results
with those obtained from OLS and from MR. In addition, we
conduct a negative control experiment that estimates the causal
effect of EA on body height (which should be zero). A com-
plete description of the materials and methods is available in
SI Appendix, section 5.

GWAS summary statistics for height were obtained from the
Genetic Investigation of Anthropometric Traits (GIANT) con-
sortium (35) and by running a GWAS on height (conditional on
EA and unconditional on EA) in the UKB (75). The UKB was
not part of the GIANT sample. GWAS summary statistics for EA
were obtained from the Social Science Genetic Association Con-
sortium (SSGAC) for the unconditional PGSs. The most recent
study of the SSGAC on EA used a meta-analysis of 64 cohorts for
genetic discovery (15). We obtained meta-analysis results from
this study with the HRS, UKB, and 23andMe cohorts excluded
and we refer to the PGS constructed from these results as EA
SSGAC. Furthermore, we obtained GWAS estimates for EA in
the full UKB release (N = 442,183) from ref. 76. We refer to
this PGS as PGS EA unc. UKB. We also created a PGS for EA
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conditional on height by running a GWAS on EA in the same
UKB sample (PGS EA cond. UKB). There is sample overlap
between Height GIANT and EA SSGAC. Therefore, whenever
one of the two was used as regressor, we excluded the other as
instrument and used a PGS from UK Biobank data instead to
ensure independence of measurement errors in the PGS.

In Table 3 we report the estimated standardized effect of
height on EA. The OLS results show that height appears to
have a strong positive effect on EA, with 2.5 additional cen-
timeters in height generating one additional month of schooling.
MR appears to confirm the causal interpretation of the OLS
result; indeed, the point estimate from MR is even slightly larger
than from OLS. As discussed above, MR suffers from probable
violations of the exclusion restriction due to pleiotropy. These
violations could stem from the possibility that some genes have
direct effects on both height and EA. (Results from refs. 15
and 18 suggest a genetic correlation between height and EA
of about 0.15.) They could also stem from the possibility that
the PGS for height by itself is correlated with the genetic ten-
dency for parents to have higher EA and income, which enables
higher parental investments into their children who may there-
fore be more likely to reach their full cognitive potential and
have higher EA. Controlling for the PGS is an imperfect strategy
for eliminating this source of endogeneity because the bias in the
estimated effect of the PGS score also biases the estimated effect
of height.

If all of the bias in EA came from positive pleiotropy, then
we would expect GIV-C and GIV-U to provide upper and lower
bounds for the true effect of height on EA, respectively. Thus, if
the only source of endogeneity is pleiotropy, the results in Table
3 would suggest that the true standardized effect is between 0.11
(from GIV-U) and 0.17 (from GIV-C).

However, the negative control regression results in Table 4
provide substantial evidence of endogeneity bias from environ-
mental sources. Given that the true effect of EA on height
should be zero, then GIV-U would accurately estimate this
effect to be zero in the absence of environmental endogene-
ity. Instead, GIV-U reports a significant positive effect of EA
on height. MR also reports a positive and statistically significant
effect of EA on height. This upward bias in the MR estimate is
strong evidence of pleiotropy bias that invalidates the IV in MR.
The guidance from the simulations points to a true estimate of
the effect of height on EA that is as small or smaller than the
GIV-U estimate, which is 25% smaller than the estimate from
MR. The extent of upward bias in the GIV-U estimate depends
on the strength of environmental variables that simultaneously
affected the height of HRS respondents and also affected
their EA.

These results also point toward a productive strategy for
learning more about the true effect of height on EA. The demon-

Table 3. Estimates of the effect of height on educational
attainment (EA)

Variable OLS MR GIV-C GIV-U

Height 0.136∗∗∗ 0.160∗∗∗ 0.168∗∗∗ 0.110∗∗∗

(0.0262) (0.0481) (0.0264) (0.0262)
PGS EA cond. UKB 0.396∗∗∗

(0.0367)
PGS EA uncond. UKB 0.384∗∗∗

(0.0354)
N 2,751 2,751 2,751 2,751

*P< 0.05, **P< 0.01, ***P< 0.001. Standardized effect sizes and SEs are
in parentheses. Birth year, birth year squared, gender, EA mother, EA father,
and the first 20 principal components are included as control variables. For
MR, a PGS for height from UK Biobank (UKB) data was used as instrument
for height. For GIV-C and GIV-U PGS EA SSGAC was used as an instrument.

Table 4. Estimates of the effect of educational attainment (EA)
on height

Variable OLS MR GIV-C GIV-U

EA 0.072∗∗∗ 0.179∗∗ 0.050∗∗∗ 0.040∗∗∗

(0.0138) (0.0543) (0.0119) (0.0120)
PGS height cond. UKB 0.448∗∗∗

(0.0174)
PGS height unc. UKB 0.446∗∗∗

(0.0175)
N 2,751 2,751 2,751 2,751

*P< 0.05, **P< 0.01, ***P< 0.001. Standardized effect sizes and SEs are
in parentheses. Birth year, birth year squared, gender, EA mother, EA father,
and the first 20 principal components are included as control variables. For
MR, a PGS for EA from UK Biobank (UKB) data was used as an instrument
for EA. For GIV-C and GIV-U PGS height GIANT was used as an instrument.

stration that pleiotropy as well as environmental bias is affecting
the estimates in Table 3 implies that there is no effective fix for
MR; its genetic instruments are contaminated by pleiotropy and
therefore cannot be used to adjust for environmental endogene-
ity. Comparisons between monozygotic twins would effectively
control for pleiotropy, but unobserved environmental factors
affecting height and EA could still bias the results from MZ twin
data. The most productive strategy is arguably to use GIV-U and
GIV-C as proxy strategies to address bias from pleiotropy while
also correcting for environmental confounds either by control-
ling for the relevant environmental factors directly or by using
data on siblings that allow controlling for shared environmental
variables via family fixed-effects. With such data, the estimates
from GIV-C and GIV-U would provide approximate bounds as
long as the GIV-U estimate of the effect of EA on height was
close to zero. If the negative control regression suggests bias
from environmental sources, the GIV-U estimate will be more
conservative than all of the other estimators considered in this
paper, and it will underpredict the true effect unless positive bias
from both pleiotropy and genetic-unrelated endogeneity is quite
strong.

These results do not provide as clean and neat a conclusion
as might be desired, although uncertainty is inevitable in the
absence of experimental data or a valid IV. At the same time, the
empirical example provides considerable insight into the impli-
cations of the available estimates. Our results strongly imply that
OLS provides an upwardly biased estimate of the effect of height
on EA. They also strongly imply that the MR estimate suffers
from pleiotropy bias and that MR is not an effective strategy
for determining whether and to what extent height affects EA.
Other studies suggest that pleiotropy between EA and height is
not extremely high (18). Our simulation results therefore sug-
gest that GIV-U either is a plausible estimate for the effect
of height on EA if genetic-unrelated endogeneity is relatively
strong or underpredicts this effect if the endogeneity is weaker.
If the estimate of GIV-U continued to be positive and statisti-
cally significant in a sibling fixed-effects analysis, we would be
rather confident that the effect is real and not an artifact of
bias either from pleiotropy or from genetic-unrelated endogene-
ity. In other words, these results represent progress toward the
goal of understanding how large the social advantage provided
by height is in the process of EA given the existence of genetic
confounds. (Obviously, none of the estimation strategies we dis-
cussed here address possible bias from nonrandom selection into
samples.)

Conclusion
Accurate estimation of causal relationships with observational
data is one of the biggest and most important challenges in epi-
demiology and the social sciences—two fields of inquiry where
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many questions of interest cannot be adequately addressed
with properly designed experiments due to practical or ethical
constraints. One important confound in nonexperimental data
comes from direct pleiotropic effects of genes on the exposure
and the outcome of interest. Both OLS and MR yield biased
results in this case. We proposed GIV regression as an empirical
strategy that controls for such pleiotropic effects using polygenic
scores. GIV regression uses standard IV estimation algorithms
such as two-stage least squares that are widely available in
existing statistical software packages. Our approach provides
reasonable upper and lower bounds of causal effects in situa-
tions when pleiotropic effects of genes are the only source of bias.
We showed that OLS, MR, and GIV regression yield biased esti-
mates if both genetic and environmental sources of endogeneity
are present. However, GIV regression still outperforms OLS
and MR in this scenario. Furthermore, GIV regression can (and
should) be combined with additional strategies that allow con-
trolling for bias from purely environmental or behavioral factors,
such as using covariates or family-fixed effects. Together, these
approaches can provide reasonable estimates of causal effects
across a broad range of scenarios.

GIV regression is called for whenever an experimental design,
a valid IV strategy, or a large-enough sample of MZ twins is
not available and when pleiotropy is a potential problem—a
situation that is frequently encountered in practice. The main
requirements for GIV regression are a prediction sample that
has been comprehensively genotyped and large-scale GWAS

results for the outcome of interest from two nonoverlapping
samples. Due to rapidly falling genotyping costs that enable a
growing availability of genetic data and large GWAS samples
for many traits, these requirements have become increasingly
feasible for many applications. Indeed, the combination of new
estimation tools and continued rapid advancements in genetics
should provide a significant improvement in our understand-
ing of the effects of behavioral and environmental variables on
important socioeconomic and medical outcomes.
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